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Abstract

We aim here at introducing a new point of view of the Laplacian of a graph, Γ.
With this purpose in mind, we consider L as a kernel on the finite space V (Γ), in
the context of the Potential Theory. Then we prove that L is a nice kernel, since
it verifies some fundamental properties as maximum and energy principles and the
equilibrium principle on any proper subset of V (Γ). If Γ is a proper set of a suitable
host graph, then the equilibrium problem for Γ can be solved and the number of the
different components of its equilibrium measure leads to a bound on the diameter of
Γ. In particular, we obtain the structure of the shortest paths of a distance-regular
graph. As a consequence, we find the intersection array in terms of the equilibrium
measure. Finally, we give a new characterization of strongly regular graphs.
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1 Introduction

The discrete Laplacian on a graph and the solution of some associated Dirichlet problems
have been widely considered for solving motley problems including, conductance of an
electrical network and bounds on the diameter of a graph, among others [1, 4, 5, 8, 9, 11,
14, 15]. The discrete Laplacian on a graph is usually seen as the discrete version of the
Laplace operator on Riemannian manifolds and the spectral methods are the main tool.

On the other hand, the quadratic form associated with the Laplace operator, which is
closely related to the spectral theory via the Rayleigh quotient, has been also considered
to analyze some extremal problems in electrical networks, [10, 16, 17, 18]. These results
are obtained when the quadratic form is seen as a Dirichlet form on a Dirichlet space [3].
The elements of this space are potentials with respect to the Green kernel of the Laplace
operator. However, as this kernel is formally expressed as a power series, it is difficult to
derive properties of the potentials from it, so most properties of the potentials are directly
obtained from the Dirichlet forms.

We aim here at introducing another aspect of the relation between Potential and
Graph Theories. We consider the discrete Laplacian on a graph as a kernel instead of an
operator and we develop the associated Potential Theory. The Laplacian kernel verifies
some fundamental principles of the Potential Theory. These principles allow us to obtain
information about the connection between a subset of vertices and its complementary as
well as about the distance between vertices.

There is no question that the Laplacian of a graph contains information about the
connection between vertices. A positive measure on the vertices of a graph, determines a
subset of points (its support) as well as a positive weight for each one of them. Therefore,
if we choose a uniform measure, for example, the characteristic of a subset of the graph,
the potential in each vertex of the subset coincides with its exterior degree. Among
all the positive measures with support in a subset of vertices that we can consider, the
measure that gives equal potential in each vertex of the subset, must give the maximum
information about the exterior connection of the subset. The existence and uniqueness of
such a measure, the so-called equilibrium measure of the subset, will be proven in Section
3. As we may expect, this equilibrium measure is uniform if and only if the exterior degree
of each vertex is constant.

In addition, the mass of the equilibrium measure, i.e., the Wiener capacity of the
subset, provides information not only about the inner connection of the subset, but also
about the connection with its complementary. In particular, we prove that the capacity is
additive with respect to the connected components of the subgraph induced by a subset.

It is not possible to obtain an equilibrium measure for the whole vertex set of a graph.
Therefore, we cannot know connection properties of the whole graph by applying the
above mentioned tools directly. To do so, we embed it into a host graph by employing a

4



commonly used technique in the context of electrical networks (see [3, 6].) It consists of
adding a new vertex joined to the graph through a new edge. Although this embedding
partly modifies the structure of the initial graph, its equilibrium measure can recognize
some properties of the connection between the vertices of the graph. For instance, when
this technique is applied to a distance-regular graph, the equilibrium measure recovers
its intersection array. Furthermore, in this case the equilibrium measure assigns a mass
to each vertex which only depends on its distance to the exterior. This allows to build
shortest paths between any pair of vertices. The results related to distance-regular graphs
are developed in Section 4, which concludes with a complete characterization of strongly
regular graphs.

To sum up, the results here obtained by considering the discrete Laplacian of a graph
as a kernel, mainly hinges on the knowledge of the equilibrium measures. Let us point
out that the effective computation of such measures can be accomplished using standard
techniques of Mathematical Programming (see [2]). Specifically, the computation can be
performed in two ways, either by solving a linear mathematical programming problem
related to the potentials of the measures or by solving a convex quadratic mathematical
programming problem related to the energy of the measures.

Throughout the paper, Γ = (V, E) denotes a (simple and finite) connected graph, with
vertex set V , |V | = n, and edge set E. The distance from x to y is denoted by d(x, y) and
d = d(Γ) = max{d(x, y) : x, y ∈ V (Γ)} stands for the diameter of Γ. Given x ∈ Γ, we write
as Γi(x) the set of vertices y such that d(x, y) = i. In particular, Γ(x) = Γ1(x) denotes the
set of vertices adjacent to x. Its cardinal is the degree of x, δ(x) = |Γ(x)|. A graph is called
k-regular if each vertex has the same degree k. Given F ⊂ V , 〈F 〉 stands for the induced
subgraph. Moreover, we denote by F c its complementary in V and we consider the subsets
∂(F ) = {x ∈ F c : (x, y) ∈ E for some y ∈ F} and Ext(F ) = F c\∂(F ). In addition, for
x ∈ F , we call exterior degree of x with respect to F the number ∂−(x) = |Γ(x) ∩ F c|.

The Laplacian matrix of Γ is the (n × n)-matrix L = L(Γ) indexed by the vertices of
Γ, whose entries Lxy are given by Lxy = −1 if x is adjacent to y, (x ∼ y), Lxx = δ(x) and
Lxy = 0 otherwise. The matrix L is symmetric and positive semidefinite.

2 Some basic concepts of Potential Theory

This section is devoted to introduce the main definitions and results of Potential Theory
that we will use later. We only expose those properties which will have repercussions on
the rest of the paper. For our purposes, it suffices to consider the potential and the energy
of mass distribution on a compact space X with respect to a continuous and symmetric
Kernel, K : X ×X −→ IR. All results and their proofs can be found in Fuglede [12].

If µ is a positive Radon measure, its support and its mass will be denoted by S(µ)
and ||µ||, respectively. For each F ⊂ X we denote by M+(F ) the set of positive Radon
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measure with support in F and we consider the set M1(F ) = {µ ∈M+(F ) : ||µ|| = 1}.
Given µ ∈ M+(X), we call Potential of µ and Energy of µ with respect to K, the

function and the value given by

Uµ(x) =
∫

X
K(x, y)dµ(y) and I(µ) =

∫

X
Uµ(x)dµ(x),

respectively. Also, we consider the functions U,W : M+(X) −→ IR given by

U(µ) = max
x∈X

Uµ(x) and W (µ) = max
x∈S(µ)

Uµ(x)

and for each F ⊂ X, the values

I(F ) = inf
µ∈M1(F )

I(µ), U(F ) = inf
µ∈M1(F )

U(µ) and W (F ) = inf
µ∈M1(F )

W (µ).

When K satisfies I(X) ≥ 0, the value

cap(F ) =
1

I(F )
,

is known as the Wiener capacity of F . Note that cap(F ) is strictly positive for all non-
empty set F ⊂ X, but it has not to be necessarily finite.

For each compact set F ⊂ X, the following extremal problems are posed:

Find σ, ν, λ ∈M1(F ) such that I(σ) = I(F ), U(ν) = U(F ) and W (λ) = W (F ).

It is well known that W (F ) = I(F ) for every compact set F ⊂ X. Moreover, their
associated extremal measures are equal and they will be called capacitary measures for F .
A kernel K is said to satisfy the maximum principle if U(µ) = W (µ) for every µ ∈M+(X).
Hence, if K verifies the maximum principle, then for every compact set F

I(F ) = U(F ) = W (F )

and they have the same extremal measures. In addition, if I is strictly convex on M1(F )
(i.e., K verifies the energy principle on F ), there exists a unique capacitary measure.

For each compact set F ⊂ X, a measure µ ∈ M1(F ) verifies that I(µ) = I(F ) if and
only if its potential satisfies the following inequalities

Uµ(x) ≥ I(F ) in F,
Uµ(x) ≤ I(F ) in S(µ).

(1)

If K satisfies the maximum principle, then Uµ(x) ≤ I(F ) in X and a fortiori Uµ(x) = I(F )
in F .
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Finally, suppose that K is a continuous symmetric kernel on X satisfying the maximum
principle and I(X) ≥ 0. If F is a non-empty compact subset of X with finite capacity
and K verifies the energy principle on F , then there exists a unique measure ν ∈M+(F )
solution of the so-called equilibrium problem:

Find µ ∈M+(F ) such that Uµ(x) = 1 in F.

Clearly, if σ satisfies I(σ) = I(F ) = U(F ) (i.e., σ is the capacitary measure), then ν =
cap(F )σ and it is called the equilibrium measure for F .

3 The Laplacian Kernel

The purpose of this section is to construct a Potential Theory in the context of Graph
Theory in such a way that we can apply the results of the previous section.

Let Γ = (V,E) be a graph. We consider the vertex set of Γ as the underlying space,
i.e., X = V . Since V is a finite set, kernels and positive measures on V are identified with
symmetric matrices and vectors of the positive cone of IRn, respectively. So, if µ ∈M+(V ),
then S(µ) = {x ∈ V : µ(x) > 0} and ||µ|| = ∑

x∈V
µ(x).

For each F ⊂ V , let 11111111111111F ∈M+(F ) denote the measure given by 11111111111111F (x) =

{
1 if x ∈ F
0 if x /∈ F

.

If F = V the subscript will be omitted. We say that a measure µ ∈ M+(F ) is a uniform
measure on F if µ = a11111111111111F for some a > 0.

If K is a kernel and µ ∈ M+(V ), then the potential and the energy of µ can be
identified with the vector Kµ and the value 〈Kµ, µ〉 respectively, where 〈·, ·〉 denotes the
standard inner product in IRn. Therefore, K fulfills the energy principle on F ⊂ V iff K
is strictly positive definite on {µ ∈ IRn : µ(x) = 0 if x /∈ F and

∑
x∈V

µ(x) = 0}.

The extremal problems described in Section 2 consist of finding σ, η ∈ M1(F ) such
that

I(σ) = min
µ∈M1(F )

〈Kµ, µ〉 and U(η) = min
µ∈M1(F )

max
x∈V

Kµ(x).

The energy extremal problem becomes a Quadratic Programming Problem, since M1(F )
is described by means of linear constraints. On the other hand, the potential extremal
problem can be re-written as

U(η) = min
µ∈M1(F )
Kµ ≤ u11111111111111

u (2)

Therefore, it becomes a Linear Programming Problem.
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In the sequel, we will consider the Laplacian of Γ, L, as a kernel on V . Then, the
potential of µ ∈M+(V ) is given by

Lµ(x) =
∑
y∼x

(µ(x)− µ(y)) = δ(x)µ(x)−
∑
y∼x

µ(y),

and the energy of µ ∈M+(V ) is the value

I(µ) =
∑

(x,y)∈E

(µ(x)− µ(y))2.

The following results establish that L is a kernel verifying the maximum and energy
principles. This will enable us to tackle the equilibrium problem for all proper subsets
F ⊂ V .

Proposition 3.1 The Laplacian kernel verifies the maximum principle.

Proof. Given µ ∈ M1(F ), then Lµ(x) = 0 if x ∈ Ext(F ) and Lµ(x) = − ∑
y∼x

µ(y) ≤ 0

if x ∈ ∂(F ). Therefore, it suffices to prove that there exists a vertex x ∈ F such that
Lµ(x) ≥ 0. If we chose x ∈ F such that µ(x) = max

y∈F
µ(y), then Lµ(x) ≥ 0.

Proposition 3.2 For each F ⊂ V , the Laplacian kernel verifies the energy principle on
F . Moreover, if F is a proper subset, I(F ) > 0.

Proof. Note that 〈Lµ, µ〉 ≥ 0 and 〈Lµ, µ〉 = 0 iff µ = a11111111111111, a ∈ IR. Therefore, L is strictly
positive definite on {µ ∈ IRn : 〈µ,11111111111111〉 = 0}. On the other hand, if F is a proper subset of V ,
for each µ ∈ M1(F ) there exists x ∈ F c such that µ(x) = 0, which implies that I(µ) > 0
and hence, I(F ) > 0.

From the proof of the above proposition, we get that I(V ) = 0 and its unique capacitary

measure is uniform, i.e., σ =
1
n

11111111111111.

Corollary 3.3 For each proper subset F ⊂ V there exists a unique equilibrium measure
ν, i.e.,

Lν(x) = 1 ∀x ∈ F.

Moreover, S(ν) = F .
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Proof. The first part is a consequence of Propositions 3.1 and 3.2.

Assume that ν(x) = 0 for some x ∈ F . Then Lν(x) = − ∑
y∼x

ν(y) ≤ 0, which contra-

dicts that ν is the equilibrium measure.

As pointed out in the continuous case, the equilibrium measure ν is equal to cap(F )σ,
where σ is the capacitary measure for F . In this case, we have that (I(F ), σ) is either the
solution of the Quadratic Programming Problem related to the energy or the solution of
the Linear Programming Problem (2).

Up to now we have shown the basic structure of the Potential Theory on a graph
that arises when the Laplacian kernel is considered. Our next goal is to derive properties
of the equilibrium measures as well as of the Wiener capacities of subsets. Firstly, we
characterize the conditions for an equilibrium measure to be uniform.

Proposition 3.4 Let F ⊂ V be a proper subset. Then, its equilibrium measure is uniform
iff ∂−(x) = ∂−(y) for all x, y ∈ F .

Proof. It suffices to observe that L11111111111111F (x) = ∂−(x) for all x ∈ F .

The following proposition will be useful for later results.

Proposition 3.5 Let F be a proper subset of V and ν its equilibrium measure. Then

|F | =
∑

x∈F

∂−(x)ν(x).

Proof. As ν is the equilibrium measure, then Lν(x) = 1, for all x ∈ F and hence,

|F | =
∑

x∈F
Lν(x) =

∑
x∈F

∑
y∼x

(ν(x)− ν(y))

=
∑

x∈F

∑
y∼x
y∈F

(ν(x)− ν(y)) +
∑

x∈F

∑
y∼x
y/∈F

ν(x) =
∑

x∈F
∂−(x)ν(x).

Proposition 3.6 Let F ⊂ V such that F =
s⋃

i=1
Fi, where Fi, i = 1, . . . , s are the vertex

sets of the connected components of 〈F 〉. Then

cap(F ) =
s∑

i=1

cap(Fi).
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Proof. If F = V , then s = 1, because Γ is connected. Hence, the result holds.

Suppose that F is a proper subset of V . For each i = 1, . . . , s, let µi be the capacitary

measure for Fi. If β =
s∑

i=1
cap(Fi) and we consider µ ∈M1(F ) defined by

µ =
1
β

s∑

i=1

cap(Fi)µi,

then Lµ =
1
β

s∑

i=1

cap(Fi)Lµi. If x ∈ F , there exists k such that x ∈ Fk. Moreover

x ∈ Ext(Fj), for all j 6= k. Then,

Lµi(x) =

{
I(Fk) if i = k,

0 if i 6= k.

Hence, Lµ(x) =
1
β

for all x ∈ F , which implies that I(F ) =
1
β

and the result follows.

Corollary 3.7 Let F = {x1, . . . , xs} be a set of independent vertices. Then,

cap(F ) =
s∑

i=1

1
δ(xi)

.

Proof. If µ = 11111111111111xi , the Dirac measure on xi, then Lµ(xi) = δ(xi). Therefore, I(xi) =
δ(xi). The result follows by applying the previous proposition.

The result of Proposition 3.6 states that the capacity is additive with respect to the
connected components of a induced subgraph. However, it is not true for an arbitrary
union of subsets of V as the following example shows.

Lemma 3.8 Let F = {x, y} such that (x, y) ∈ E. Then

cap(F ) > cap(x) + cap(y).

Proof. The capacitary measure for F , σ, must satisfy δ(x)σ(x) − σ(y) = δ(y)σ(y) −
σ(x) and σ(x) + σ(y) = 1. Then, σ(x) =

δ(y) + 1
δ(x) + δ(y) + 2

and σ(y) =
δ(x) + 1

δ(x) + δ(y) + 2
.

Therefore,

cap(F ) =
δ(x) + δ(y) + 2
δ(x)δ(y)− 1

>
1

δ(x)
+

1
δ(y)

.
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The above lemma says that the Wiener capacity for the Laplacian kernel, is not sub-
additive. This is due to the fact that the Laplacian is not a positive matrix. However,
this example verifies the following equality:

1
I({x, y}) + 1

=
1

I(x) + 1
+

1
I(y) + 1

.

If F ⊂ V , the value (I(F ) + 1)−1 can be seen as the Wiener capacity of F with respect
to the positive kernel L + J, where J denotes the matrix whose entries are equal to one.
In fact, the Wiener capacity is subadditive for a positive kernel, (see [12, p. 157].) In
particular, we have the following result.

Proposition 3.9 Let F1, . . . , Fs ⊂ V and F =
s⋃

i=1
Fi. Then,

(I(F ) + 1)−1 ≤
s∑

i=1

(I(Fi) + 1)−1.

Corollary 3.10 Let F ⊂ V be a proper subset. Then, cap(F )cap(F c) ≥ 1.

Before ending this section let us determine the Wiener capacities and the capacitary
measures for proper subsets of some nice graphs which help us to study the sharpness of
the lower bound in the above corollary. Table 1 shows such capacities and measures for
connected subsets F = {x1, . . . , xs} of cardinal s < n.

Notice that the product cap(F )cap(F c) can be much larger that one. For instance in
a cycle cap(F )cap(F c) ≥ n(n2−1)

24 . However, in a complete graph this product is equal to
one. The differences in the behaviour of the capacity products are due to the different
degrees of connection between the vertices of F and F c. In particular, the following result
characterize when equality holds in Corollary 3.10.

Proposition 3.11 Let F ⊂ V be a proper subset. Then,

cap(F )cap(F c) = 1 ⇐⇒ max{d(x, y) : x ∈ F, y ∈ F c} = 1.

Moreover, the capacitary measures for F and F c are the uniform measures on F and F c

respectively.

Proof. Note that max{d(x, y) : x ∈ F, y ∈ F c} = 1 iff ∂−(x) = |F c| for all x ∈ F and
∂−(y) = |F | for all y ∈ F c. In addition, the uniform measures on F and F c, µ1 = 1

|F |11111111111111F

and µ2 = 1
|F c|11111111111111F c , satisfy Lµ1 = |F c|

|F | on F and Lµ2 = |F |
|F c| on F c, respectively. Therefore,

they are the capacitary measures for F and F c and cap(F )cap(F c) = 1.
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Γ F σ(xi) cap(F )

complete graph, Kn
1
s

s

n− s

bipartite complete
graph ,Kp,q

|F ∩ V0| = s0

|F ∩ V1| = s1

p + s1

ps0 + qs1 + 2s0s1

q + s0

ps0 + qs1 + 2s0s1

ps0 + qs1 + 2s0s1

pq − s0s1

path, Pn δ(xs) = 1 3
2is− i(i− 1)

s(s + 1)(2s + 1)
1
6
s(s + 1)(2s + 1)

path, Pn

or
cycle, Cn

δ(xi) = 2

i = 1, . . . , d s
2e

6
is− i(i− 1)

s(s + 1)(s + 2)

σ(xs−i+1) = σ(xi)

1
12

s(s + 1)(s + 2)

Table 1: Some capacities and capacitary measures.

Conversely, if K = L+ J and we consider 11111111111111 = 11111111111111F + 11111111111111F c , then

n2 = 〈K11111111111111,11111111111111〉 = 〈K11111111111111F ,11111111111111F 〉+ 〈K11111111111111F c ,11111111111111F c〉+ 2〈K11111111111111F ,11111111111111F c〉
≥ (I(11111111111111F ) + |F |2) + (I(11111111111111F c) + |F c|2) ≥ |F |2(I(F ) + 1) + |F c|2(I(F c) + 1)

≥ (|F |+ |F c|)2
1

I(F ) + 1
+

1
I(F c) + 1

= n2

1
I(F ) + 1

+
1

I(F c) + 1

,

where the last inequality has been obtained by applying the Cauchy-Schwarz inequality
in the form: (a + b)2 ≤ (c + d)

(
( a√

c
)2 + ( b√

d
)2

)
.

On the other hand, cap(F )cap(F c) = 1 iff 1
(I(F )+1) + 1

(I(F c)+1) = 1. Therefore, by using
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the above inequalities, we conclude that

cap(F )cap(F c) = 1 =⇒ 〈K11111111111111F ,11111111111111F c〉 = 0.

Finally, it is enough to observe that

max{d(x, y) : x ∈ F, y ∈ F c} = 1 iff 〈K11111111111111F ,11111111111111F c〉 = 0,

since

|F ||F c| −
∑

y∈F c

∂−(y) = 〈K11111111111111F ,11111111111111F c〉 = 〈K11111111111111F c ,11111111111111F 〉 = |F ||F c| −
∑

x∈F

∂−(x).

Up to now, we have analyzed the equilibrium problem and some of its properties for
any proper subset of the vertex set of a graph. Clearly, the equilibrium problem for the
vertex set of a graph, with respect to the Laplacian kernel, could not be solved unless we
embed it in a host graph. Although there exist motley ways of do this, we will proceed
in such a way that the influence of the joined elements to the initial graph is minimum
and the information about the inner connection of V remains as much as possible. For
instance, if we consider a unique new vertex joined with each of the vertices of the graph
through a new edge, by Proposition 3.4 we conclude that the equilibrium measure is the
uniform measure on V and the capacity of V is 1

n . Therefore, this embedding does not
give us more information about the inner connection of V . For our purposes, it will be
better to add to the graph a unique vertex and a unique edge.

Specifically, let Γ = (V, E) be a graph and consider a new vertex xn+1, which will be
joined through an edge to a fix vertex x ∈ V . Let Γx = (V x, Ex), where V x = V ∪{xn+1}
and Ex = E ∪ (x, xn+1). We will call this graph the extended graph of Γ with respect to x.
Let Lx the Laplacian of Γx. In this case, the submatrix Lx

|Γ coincides with L except in its
diagonal element (Lx)xx which is equal to δ(x) + 1.

Let us consider now the equilibrium problem for V as a proper set of V x. Then, using
the previous results, there exists a unique equilibrium measure, νx, for V . Therefore, the
potential of νx satisfies

Lxνx(y) = 1 if y ∈ V
Lxνx(y) = −νx(x) if y = xn+1.

(3)

In the sequel, we call equilibrium array for V ⊂ V x to q(x) = {q0(x), q1(x), . . . , qt(x)},
the set of different components of νx, where it is assumed that q0(x) < q1(x) < · · · < qt(x).
Note that the length of the equilibrium array, t + 1, is larger than one, unless n = 1,
because νx cannot be uniform. On the other hand, q0(x) only depends on the order
of Γ, since q0(x) = n by Proposition 3.5. Also, we will consider the positive integers
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mi(x) = |{y ∈ V : νx(y) = qi(x)}|, i = 0, . . . , t, i.e., the multiplicity of each element of
the equilibrium array.

The equilibrium measure enables us to obtain an upper bound on the distance between
vertices.

Proposition 3.12 Let V ⊂ V x, νx the equilibrium measure and q(x) the equilibrium
array for V . Then,

νx(y) = qi(x) =⇒ d(y, x) ≤ i.

In particular, m0(x) = 1.

Proof. We prove the result by mathematical induction.

If νx(y) = q0(x), then y = x, otherwise Γ(y) ⊂ V and νx(y) ≤ νx(z) for all z ∈ Γ(y).
Therefore, Lxνx(y) =

∑
z∈Γ(y)

(νx(y) − νx(z)) =
∑

z∈Γ(y)
(q0(x) − νx(z)) ≤ 0, a contradiction

since ν is the equilibrium measure. This reasoning also proves that m0(x) = 1.

Suppose that νx(y) = qj(x) =⇒ d(y, x) ≤ j, for all j = 0, . . . , i, and let y ∈ V such
that νx(y) = qi+1(x). Assume that for each z ∈ Γ(y) there exists j ≥ i + 1 such that
νx(z) = qj(x). Then

Lxνx(y) =
∑
z∼y

(νx(y)− νx(z)) ≤
∑
z∼y

(qi+1(x)− qi+1(x)) = 0,

a contradiction again. Therefore, there must exist a vertex z ∈ Γ(y) such that νx(z) =
qj(x), for some j ≤ i. Then, by using the hypothesis of induction, d(z, x) ≤ i, which
implies d(y, x) ≤ i + 1.

For each vertex x ∈ V we can consider the equilibrium problem for V ⊂ V x. Then
applying the above proposition, we obtain an upper bound of the distance between any
pair of vertices. In particular, the maximum length of all equilibrium arrays minus one is
an upper bound of the diameter of the graph.

4 Distance-regular graphs

In this section, we study the case of distance-regular graphs. It seems natural to ask our-
selves whether the result of Proposition 3.12 can be improved with additional information
about the structure of the considered graphs. In particular, this is the case when the graph
is a distance-regular graph. Thus, in this section, we elaborate upon the previous work
to derive some new results for such a case. Specifically, we use the equilibrium theory to
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determine the distance between any pair of vertices as well as a shortest path between
them.

A connected graph Γ is called distance-regular if there are integers bi, ci, i = 0, . . . , d
such that for any two vertices x, y ∈ Γ at distance i = d(x, y), there are exactly ci

neighbours of y in Γi−1(x) and bi neighbours of y in Γi+1(x). In particular, Γ is regular of
degree k = b0.

The sequence
ι(γ) = {b0, b1, . . . , bd−1; c1, . . . , cd},

is called the intersection array of Γ. In addition, ai = k−ci−bi is the number of neighbours
of y in Γi(x), for d(x, y) = i. Clearly, bd = c0 = 0, c1 = 1 and the diameter of Γ is d.
Moreover, 1 ≤ c2 ≤ · · · ≤ cd.

For any vertex x ∈ Γ the number of vertices at distance i from it, i.e., |Γi(x)|, will be
denoted by ki. This number does not depend on the vertex, x, and the following equalities
hold:

k0 = 1, k1 = k, ki+1ci+1 = kibi, i = 2, . . . , d− 1. (4)

For basic concepts and properties on distance-regular graphs, we refer to the reader to
Brouwer, Cohen and Neumaier [7].

As usual, we consider the distribution diagram associated with the intersection array
of the graph. Then, the Laplacian matrix can be represented by the following tridiagonal
(d + 1)× (d + 1) matrix:

LD =




k −b0 0 · · · 0 0
−c1 k − a1 −b1 · · · 0 0
0 −c2 k − a2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · k − ad−1 −bd−1

0 0 0 · · · −cd k − ad




Most of the results about distance-regular graphs are obtained by using the matrix LD.
This will also happen in our development. For our purposes we have to consider Γx, the
extended graph with respect to x, and the matrix Lx

D which is equal to LD except for
the first diagonal entry (Lx

D)11 = k + 1. We will prove that the system Lx
Dλ = 1 has the

equilibrium array of the equilibrium problem for V with respect to the kernel Lx as unique
solution.

Now, we tackle the existence of a solution of the system Lx
Dλ = 1, i.e., the system:





(k + 1)λ0 − kλ1 = 1
−ciλi−1 + (bi + ci)λi − biλi+1 = 1, i = 1, . . . , d− 1
−cdλd−1 + (bd + cd)λd = 1.

(5)
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In what follows let γi = λi+1−λi, i = 0, . . . , d−1 and γ−1 = λ0. Then λ = (λ0, . . . , λd)
is a solution of the system (5) iff γ = (γ−1, . . . , γd−1) is a solution of the system:





γ−1 − kγ0 = 1
ciγi−1 − biγi = 1, i = 1, . . . , d− 1
cdγd−1 = 1

(6)

Proposition 4.1 Let Γ = (V, E) be a distance-regular graph. Then the system (6) has a
unique solution given by:

γ−1 = n, γi =
1

ci+1ki+1

(
n−

i∑

j=0

kj

)
, i = 0, . . . , d− 1.

In addition, γi > 0 for all i = 0, . . . , d− 1.

Proof. The proof is by mathematical induction on i = d − 1, . . . , 0. For i = d − 1 the
result follows immediately from the last equation of the system. Suppose now that it is
verified for i, then

ciγi−1 = 1 + biγi = 1 +
bi

ki+1ci+1

(
n−

i∑

j=0

kj

)
=

1
ki

(
ki + n−

i∑

j=0

kj

)
=

1
ki

(
n−

i−1∑

j=0

kj

)
.

Finally, γ−1 = n. In addition, γi > 0 for all i = 0, . . . , d− 1, since n =
d∑

j=0
kj .

Corollary 4.2 The system Lx
Dλ = 1 has a unique solution such that

n = λ0 < λ1 < · · · < λd.

Proposition 4.3 Let Γ = (V,E) be a distance-regular graph, λ the solution of Lx
Dλ = 1

and q(x) the equilibrium array for V ⊂ V x. Then λ = q(x).

Proof. Let νx such that νx(y) = λj if d(x, y) = j. Then

Lxνx(y) = kλj − cjλj−1 − ajλj − bjλj+1 = (Lx
Dλ)j = 1.

Therefore, νx is the equilibrium measure. Furthermore, the equilibrium array of the
equilibrium measure is the solution of the system Lx

Dλ = 1, because the equilibrium
measure is unique.
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Corollary 4.4 Let Γ = (V, E) be a distance-regular graph. Then the equilibrium measure,
νx, for V ⊂ V x verifies

νx(y) = qi(x) ⇐⇒ d(x, y) = i.

Moreover, q(x) is independent of x.

Based on the above corollary we call equilibrium array for V to q = q(x) for any x ∈ V .
Note that the equilibrium measure does depend on x, because its mass on y ∈ V depends
on the distance between x and y.

A straightforward consequence of the above corollary is that the diameter of a distance-
regular graph is equal to the length of its equilibrium array minus one. Furthermore, we
can obtain a shortest path between any pair of vertices. Namely, given x, y ∈ V we solve
the Linear Programming Problem (2) with respect to the extended laplacian kernel, Lx,
to obtain the equilibrium measure νx. Then we find i such that νx(y) = qi. The next step
consists of applying the Shortest Path Algorithm described in Figure 1 to find the path
w0 = x,w1, · · · , wi−1, wi = y.

We have shown the equivalence between the solution of the system Lx
Dλ = 1 and

the solution of the equilibrium problem for V ⊂ V x. This has enabled us to determine
the equilibrium measure from the intersection array. The following result shows that the
equilibrium measure also determines the intersection array of a distance-regular graph.

Proposition 4.5 Let Γ be a distance-regular graph and q its equilibrium array. Then
d(Γ) = d and

ki = mi, bi =
1

mi(qi+1 − qi)

d∑

j=i+1

mj , ci+1 =
1

mi+1(qi+1 − qi)

d∑

j=i+1

mj , i = 0, . . . , d− 1.

Proof. The proof is straightforward using that q is the unique solution of Lx
dλ = 1 and

applying Proposition 4.1.

An application of the equilibrium problem refers to the estimation of the effective
resistance of a resistive electrical network. If the underlying graph is a distance-regular
graph and q is its equilibrium array, the effective resistance between two vertices x, y ∈ V

at distance i is given by ri = rxy =
2
n

(qi − q0). This is because that the equilibrium array

is the solution of the system (5), which is equivalent to the system solved by Biggs [4,
Theorem C] to determinate the effective resistance.

We finish this paper showing that the equilibrium measures, νx, x ∈ V , character-
ize the strongly regular graphs, i.e., distance-regular graphs with diameter equal to two.
If Γ is a strongly regular graph of order n and degree k, any pair of adjacent vertices
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have a1 common neighbours and any two distinct non-adjacent vertices have c2 common
neighbours. It is known that a regular graph Γ is strongly regular iff it has exactly three
different eigenvalues (see [13, p. 179]). We obtain an analogous result based on the length
of the equilibrium arrays for V .
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Figure 1: Shortest Path Algorithm.

Theorem 4.6 Let Γ = (V,E) be a k-regular graph. Then, Γ is strongly regular iff for
each x ∈ V , q(x) has length equal to three.
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Proof. If Γ is strongly regular, for each x ∈ V , q(x) is independent of x and has length
equal to three, because Γ is distance-regular and d(Γ) = 2.

Conversely, let x ∈ V and q(x) = {q0(x), q1(x), q2(x)} the equilibrium array for V ⊂
V x, with multiplicities 1 = m0(x),m1(x), m2(x).

The first step of the proof consists of showing that

νx(y) = qi(x) ⇐⇒ d(x, y) = i, i = 1, 2.

From Proposition 3.12 we know that if νx(y) = q1(x), then y ∼ x. Suppose that there exists
a vertex y ∼ x such that νx(y) = q2(x) and take a vertex z ∼ x such that νx(z) = q1(x).
Then the potential at y is

Lxνx(y) = kq2(x)− αq2(x)− βq1(x)− q0(x) = 1,

where α and β are the number of neighbours of y which have measure q2(x) and q1(x)
respectively.

Analogously,

Lxνx(z) = kq1(x)− α′q2(x)− β′q1(x)− q0(x) = 1,

where α′ and β′ are defined in a similar way. Subtracting the two last equations and
keeping in mind that k = α + β + 1 = α′ + β′ + 1, we have (β + α′ + 1)(q2(x)− q1(x)) = 0
which is a contradiction, since β ≥ 0, α′ ≥ 0 and q1(x) < q2(x).

As a result of the case i = 1, we also obtain that νx(y) = q2(x) ⇐⇒ d(x, y) = 2.
Therefore, d(Γ) = 2, m1(x) = k and m2(x) = n− k − 1.

Now, take y ∈ Γ(x), ay
1(x) = |Γ(y) ∩ Γ(x)| and by

1(x) = |Γ(y) ∩ Γ2(x)|. We show that
these numbers are independent of y. Let y, z ∈ Γ(x) and consider the potential at them.

Lxνx(y) = kq1(x)− ay
1(x)q1(x)− by

1(x)q2(x)− ν0 = 1
Lxνx(z) = kq1(x)− az

1(x)q1(x)− bz
1(x)q2(x)− ν0 = 1.

Subtracting these two equations we obtain (by
1(x)− bz

1(x))(q1(x)− q2(x)) = 0. Therefore,
by
1(x) = bz

1(x), since q1(x) < q2(x). Keeping in mind that ay
1(x) + by

1(x) + 1 = k for all
y ∼ x, we get that ay

1(x) = az
1(x).

Analogously, let y ∈ Γ2(x), ay
2(x) = |Γ(y) ∩ Γ2(x)| and cy

2(x) = |Γ(y) ∩ Γ1(x)|. We
conclude that these numbers are independent of y by considering the potential at y, z ∈
Γ2(x) and reasoning as above.

Therefore, for each x ∈ V we have the array {a1(x), a2(x), b1(x), c2(x)}. We finish
the proof by showing that these numbers do not depend on x, i.e., ι(Γ) = {k, b1; 1, c2}
is the intersection array of Γ. It suffices to prove that one of the elements of this array
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is independent of x, because a1(x) = k − b1(x) − 1, kb1(x) = (n − k − 1)c2(x) and
a2(x) = k − c2(x).

Let x, y ∈ V be. If d(x, y) = 1, then a1(x) = |Γ(x)∩Γ(y)| = a1(y). On the other hand,
if d(x, y) = 2 and z is an adjacent vertex to x and y, then a1(x) = |Γ(z)∩Γ(x)| = a1(z) =
|Γ(z) ∩ Γ(y)| = a1(y).
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